Examples of Program Composition
[llustrating the Use of Universal Properties

*

Michel Charpentier and K. Mani Chandy
California Institute of Technology
Computer Science Department
m/s 156-80, Pasadena, CA 91125
e-mail; {charpov, mani}@cs.caltech.edu

Technical Report: CS-TR-99-01

Abstract

This paper uses a theory of composition based on ezistential and uni-
versal properties. Universal properties are useful to describe components
interactions through shared variables. However, some universal proper-
ties do not appear directly in components specifications and they must
be constructed to prove the composed system. Coming up with such uni-
versal properties often requires creativity. The paper shows through two
examples how this construction can be achieved. The principle used is
first presented with a toy example and then applied to a more substantial
problem.

1 Introduction

A goal of compositional systems development is to support the publication of
software modules in a repository such as the Web, where each module is pub-
lished with its specification, and where new modules can be created by compos-
ing existing modules. Hardware vendors publish parts lists with specifications,
and other vendors compose these parts to create new parts. Personal comput-
ers are manufactured in this fashion. We establish properties of a composed
system from the specifications of the components; we do not consider how the
components are implemented provided they satisfy their specifications.

Systems can be developed in a compositional way whether the development
is bottom-up or top-down or some combination of the two. In all cases, a goal is
to specify each component so that the component can be used in a wide variety
of environments.

*This work is supported by a grant from the Air Force Office of Scientific Research.

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display acurrently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
1999 2 REPORTTYPE 00-00-1999 to 00-00-1999
4. TITLEAND SUBTITLE 5a. CONTRACT NUMBER
Exampl_es of Program Composition Illustrating the Use of Universal £b. GRANT NUMBER
Properties

5¢c. PROGRAM ELEMENT NUMBER
6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Air Force Office of Scientific Research,875 North Randolph Street Suite | REPORT NUMBER
325,Arlington,VA,22203-1768

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

seereport

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17.LIMITATION OF | 18 NUMBER | 19a NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 14
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

We would like a specification of a software module to name only variables
used in that module. We prefer not to specify one module using variables named
in other modules with which this module may be composed. The reason for this
preference is to allow the widest latitude for the environments of a module.
Specifying variables in the environment can over-specify the environment.

A property is a predicate on systems. A specification is a desired property of
a system. (Usually, a specification is a desired property which is a conjunction
of desired properties.) A local property of a system is a property that names
only variables of that system. We would like the specification of a system to be
a local property of that system.

When we compose components to get larger systems we may find that, luck-
ily for us, all the properties we desire for the composed system can be obtained
in a straightforward way from the specifications of the components. In other
cases, we may have to be creative in proving system specifications from their
component specifications. This paper is an exploration of how we can prove
system properties from local component properties.

This paper uses a theory of composition proposed in [5, 6]. This theory
is based on existential and universal property types. A property type is an
existential type when it holds in any system in which at least one component
has the property. A property is a universal type when it holds in any system in
which all components have the property. Consider a simple example. Imagine
that we are putting pieces together in a jigsaw puzzle. An example of a universal
property is "the component is entirely dark colored.” If we put entirely dark-
colored components together we get entirely dark-colored (larger) components.
An example of an existential property is: “the component has a light-colored
region.” A component has a light-colored region if it has a subcomponent with
a light-colored region.

Some properties are neither universal nor existential. The earlier work, how-
ever, proposes a theory of composition based on universal and existential prop-
erties. Conjunctions of these properties are adequate for specifying most con-
current systems. In particular, existential properties seem to play an important
role in the specification of distributed systems [3].

Here, we consider the case of a shared memory system. In such systems, a
compositional approach must provide means to describe the way components
modify shared variables.

Components specifications do not describe their use of shared variables with
existential properties. Specifications about one component must make assump-
tions on the way other components modify shared variables. One way is to use
universal properties that specify how all components use shared variables.

However, a universal property of one component referring only to local vari-
ables and shared variables of that component and not to other components’
local variables will generally not be satisfied by all other components, which
modify shared variables according to their local variables. This is because each
component has a property defined in terms of its local and shared variables, and
so these properties are different for different components.

To cope with this difficulty, one approach is to build, from components

specifications, a universal property satisfied by all components, which is then a
system property. The paper presents an example of that step.

After presenting the programming model used, we first consider a toy exam-
ple to highlight the difficulties related to universal properties and the way they
can be solved. We then apply the same principles to a more important example:
a priority mechanism for conflicting processes.

2 Programming Model

The programming model that we use to illustrate the theory is the model used
in [6, 3] which is derived from UNITY [4]. A program consists of a set of typed
variables, an initially predicate which is a predicate on program states, a finite
set C' of commands, and a subset D of C' of commands subjected to a weak
fairness constraint: every command in D must be executed infinitely often. The
set C' contains at least the command skip which leaves the state unchanged.

The program composition is defined to be the union of the sets of variables
and the sets C' and D of the components, and the conjunction of the initially
predicates. Such a composition is not always possible. Especially, composition
must respect variable locality (a variable declared local in a component should
not be written by another component) and must provide at least one initial
state (the conjunction of initial predicates must be logically consistent). We use
F x G to denote that programs F and G can be composed. Then, the system
resulting from that composition is denoted by F|G.

To specify programs and to reason about their correctness, we use the fol-
lowing properties:

init p = initially = p

transient p = (dc:c€ D : p = wp.c.—p)
p next q =({Ve:ceC:p= wp.cqg)
stable p = pnext p

invariant p = (init p) A (stable p)

We also use the liveness property leads-to, denoted by +— and defined by the
following rules:

Transient : [transient q = true— —q|
Implication : [p=gq] = [p+— g
Disjunction : For any set of predicates S:
[(Vp:peS:prq) = (Fp:peS:p)q]
Transitivity : [p— gAg—T = p—r]
PSP :[p—gAsnextt = (pAs)— (gAs)V (-sAt)]

Note that we use properties with their inductive definition and not the definition
based on strongest invariant [12]. In order to avoid some mix-up, we do not use
the substitution aziom [4], although we could when dealing with global system
properties.

Another element of the theory is the guarantees operator, from pairs of
properties to properties. Given program properties X and Y, the property
X guarantees Y is defined by:

X guarantees Y - F = (VG : FxG: (X - F|G) = (Y - F|G))

In this paper, we deal more specifically with universal properties and the
guarantees operator is not used.

For ezistentiality and universality, we use the definition in [3], which is
slightly different from the original definition in [6]. For any program property
X:

X is emistential (VF,G:FxG:X-FVX-G=X-F|G)

(VF,G:F«xG:X-FANX-G= X-F|G)

2

X is universal 2

Properties of type init, transient and guarantees are existential and prop-

erties of type next, stable and invariant are universal. The properties leads-to

are, in general, neither existential nor universal. However, leads-to can appear

on the right-hand side of a guarantees to obtain existential liveness properties
other than transient [6, 3].

3 The Toy Example

3.1 Informal Description

We consider a set of components sharing a global counter. Each component
also uses a local counter. We are interested in the relationship between the
local counters and the global counter.

Components increase a global counter C' by one each time they perform a
certain action a. Therefore, the value of counter C' always equals the total
number of actions a that have been performed.

In the remainder of the section, we show what difficulties arise when applying
a compositional approach to such a problem, and how to solve them. We specify
the behavior previously described at the component level, and the correctness
of the global system is derived in a compositional way.

3.2 Component Specification

Each component ¢ has a counter ¢; of actions a performed. Therefore, it must
increase the global counter C' each time it increases its counter ¢;. The naive
specification, corresponding to the case where the system is composed of one
component, 4, is:

e init C = ¢; - Component;
e stable C = ¢; - Component,;

If all components share this specification, we have two problems:

e The initial condition of the global system is (Vi :: C' = ¢;), from which we
cannot deduce the desired property that C' equals the sum of the counters
Ci3

e If ¢; is local to component ¢ and component j has to modify the shared

variable C, the property stable C' = ¢; is not satisfied by component j.

To obtain a compositional proof, we have to do a little more work. Initially,
C must equal the sum of all the ¢;, but expressing this sum is not local to the
component. The only way to know the sum, at the component level, is that all
¢; are zero (so that the sum does not depend on the number of components').
So, the component can have the following local init predicate:
init ¢; =0A C = 0- Component;

If all other components have the same condition, the initial state will satisfy the
condition that C equals the sum of the ¢;.

Now, we need the property that component ¢ will always increase C and c¢;
by the same value. Formally:

Vk,N ::ci=kANC =Nnext (Id:d>0:¢; = k+dAC = N +d)- Component;
This is equivalent to:
Vk,N ::C =c¢;+ N —knext C =c;+ N — k- Component;
and since k and N are universally quantified, this is equivalent to:
Vk :: stable C' = ¢; + k - Component;

The last thing we must specify to obtain a compositional specification is
what variables are local and what variables are shared. This is achieved through
a local declaration that allows to (syntactically) check what compositions are
valid:

local c¢; - Component;

Only variables not declared local can be written by other components (here, the
only non local variable is C). From this local declarations, we deduce logical
properties in a generic way:

For all variables v, other than c¢; and C, Vk :: stable v = k- Component;
Finally, at a logical level, the specification of Component; becomes:
init (¢; =0AC =0) (1)
Vk ::stable C =c¢; + k (2)
For all variables v, other than ¢; and C, Vk :: stablev=£%k (3)

The set of universal properties are still not shared by other components, but
we show, in the next section, how a shared universal property can be deduced
from them.

1We could have init C = ci, for the component i and init ¢; = 0 for the others, but
this would introduce a dissymmetry.

3.3 Correctness Proof

First, from init and local properties, we observe that:
(Vi,j :i# j: Component; * Component)

Therefore, We can consider a system composed of N components, each com-
ponent satisfying the previous specification:

System = (i : 0 <i < N : Component;)

The goal here is to prove global system correctness from the component speci-
fications. This desired property is:

N-1
invariant C = Z ¢; - System
i=0

Proof:

{Component specifications, rewriting (2) and (3)}
For all i,init (¢; = 0A C = 0) - Component,
A For all i,Yki, ko, - ky 1 stable C =c¢; + ;. kj - Component;
A For all i,Vky,ka,---, ky :: stable (Vj: j #i:c¢c; = k;) - Component;
= {Conjunction of stable properties, removing unused dummies}
For all 4,init (¢; = 0A C = 0) - Component,
A For all i,stable C' =}, c; - Component,;
= {init properties are existential, stable properties are universal}
init (Vi :: (¢; =0A C =0)) - System
A stable C' =3, c;- System
= {Predicate calculus}
init C' =}, c; - System
A stable C =3, c;- System
= {Definition of invariant}
invariant C' =}’ ¢; - System

3.4 Lessons from the Toy Example

The proposal of local properties (1) and (2) of Component; was obtained from an
analysis of the kinds of systems in which we expected to embed the component.
In this sense, we took a top-down approach to get a local component specification
from an anticipated system specification. However, we can now use our local
component specification in a variety of systems including those that we have
not anticipated.

4 The Priority Mechanism

4.1 Description

We suppose a set of perpetually conflicting components: Each component always
wants to perform an action that requires it to have higher priority than all
its neighbors. These conflicts are solved by a priority mechanism. Such a
mechanism should:

e never give priority at the same time to two conflicting components (8);
e give priority to each component in turn (9).

We uses a principle presented in [4]. We give an orientation to the graph of
conflicts so that it always remains acyclic, and we use this graph as a priority
graph.

Then, a component should:

e wait until it has priority over its neighbors (4);
e yield priority to its neighbors in finite time after receiving priority (5);
e not introduce cycles in the graph (6).

A way not to introduce cycles is that an active node (with a higher priority
than its neighbors in the graph), when changing priorities, always gets a lower
priority than all its neighbors.

4.2 Component Specification

We call P the (nonoriented) finite graph of neighborhood. Unless explicitly
specified, a graph property prop is to be understood as P.prop. The graph P is
described by variables N[i]:

NIi] £ set of the neighbors of Component;

We require that (Vi :: ¢ ¢ NJ[i]) (no node is conflicting with itself). We as-
sume (Vi,j 2 ¢ € N[j] = j € N[i]) is invariant in the system (implementation of
variables N[i]).

The graph orientation is defined by the arrow —. The notation (i — j)
means that component ¢ has priority over component j. This is a boolean value.
It can be modified both by ¢ and j and by no other node. Any change must
respect the (implementation) invariant: (Vi,j:j € N[i]: (i = j) = ~(j — 9)).

The function Priority.i is used to represent the priority of a node ¢ over all
its neighbors:

Priorityi = (Vj:j € NJ[i]: (i = j))

The three properties of component i become:

Vb,j::j € N[i]A (i = j) = bA —Priority.i next (i — j) = b- Component,(4)
transient Priority.i - Component, (5)
Priority.i next Priority.iV (Vj:j € N[i]: (j — i)) - Component, (6)

As previously, we add a locality constraint: A component cannot change
edges other than its incoming and outcoming edges:

Vb, 5,5 i #iNG #iN(— j') =bnext (j = j') =b- Component;, (7)

4.3 System Specification
Here, we express formally the system specification previously informally stated:

e safety:
invariant (Vi :: Priority.i = (Vj : j € N[i] : = Priority.j)) - System (8)

e liveness:
Vi :: true — Priority.i - System 9)

The proof of safety is trivial. To prove the liveness part, we use the fact
that the graph always remains acyclic, and therefore that there is always a node
which has the priority. To achieve that, we have to build a global universal
property, satisfied by all components, from which we can deduce the graph
acyclicity. It corresponds to the step presented in the toy example to obtain
the property invariant C'=). c¢;. However, here, the property is more tricky
(see property (13)).

4.4 Notations

In order to express this acyclicity, we define the functions? R.i and A.i:
Ai={j:J€N[i]: (G-}
and a kind of (nonreflexive) transitive closure R*.i and A*.i:
R'i= R Vn, R"i=R"iU (] Rj R i=] Rri
JER™.i n>0

R*.i is the set of nodes reachable from node ¢ following the graph’s edges. A*.i
is defined in the same way and is the set of nodes from which the node i is
reachable.

2Defining R.i and A.i as functions instead of relations allows the use of set operators to
simplify the writing of some formulas.

We use the following property for all i and j:
[i e R*.j = j € A".i] (10)
Then the graph acyclicity is defined by:

Acyclicity = (Vi:i¢ R*.i)
= (Viui¢ A*q)

We also use the equivalent definition of Priority.i:

Priorityd = A*i=1 (11)

4.5 Construction of a Universal Property

Definition 1 Let G and G' be two graphs differing only by edge orientation.
We say that G' is derived from G through node iy if and only if all the edges of
10 are outcoming in G and incoming in G', all other edges being equal in G and
G'.

GYS G =
kK kK #io: Gk = k) = G'.(k = k")) AG.A*ig = D AG'.R*.ig = 0

Lemma 1 If a graph G' is derived from a graph G through node ig, then the
reachability of nodes in G' cannot be greater than the union of what they are in
G and the singleton {ip}.

G G = (Vi:G.R*iCG.R"iU{i})]
Proof: From graph theory. O

Property 12 The only changes a component © can make in the priority graph
are governed by the relation ~.

VG:P=Gnext P=GVG-5P- Component; (12)
Proof: Trivial from the specifications (4), (6) and (7) of component ¢. O
Property 13 (Universal system property)
VG :: P =G next P =GV (Jip :: G-S P) - System (13)

Proof: From (12), the property is satisfied by every component. Since nezt is
universal, this is a system property. O

4.6 Proof of the Liveness Property (9)

Property 14 A component cannot enter any reachability set before it has pri-
ority.
Vi, ju A*i#OANi¢ R*.j next i ¢ R*.j - System (14)

Proof: From lemma 1 and (13):
VG, r,i,j =
P=GAR*j=rNA*i#0Ni¢r

next

P =GV (Fio ::G@P/\R*.jCTU{iO}/\i¢r)-5ystem

If P =G, then R*.j = r and then i ¢ R*.j. If not, from G5 P, we know that
G.A*.ig = 0. Therefore, ig # i, and since ¢ ¢ r, we deduce that ¢ ¢ R*.i. Using
disjunction over G and r, we obtain (14). O

Property 15 A component with priority will keep its reachability set or its
above set empty.

Vi A*i =0 next A*i =0V R*.i = (- System (15)
Proof: If a component has priority, its neighbors cannot have priority and,
thanks to (4) and (7), cannot change any edge. Therefore, its neighbors cannot
set its own priority to false. That means that (6) is satisfied by all components.
Since it is universal, it is a system property:
Vi :: Priority.i next Priority.iV (¥Vj:j € N[i]:: (j = ©)) - System
Then, just rewriting using R*.i and A*.i, we obtain exactly (15). O
Property 16 If it is acyclic initially, the priority graph remains acyclic.
Acyclicity next Acyclicity - System (16)
Proof: From (14), choosing i = j, we have:
Vi A*i#OANi¢ R*inext i ¢ R*.i- System
From (15), using i € R*.i =i € A*.i:
Vi A*.i = () next i ¢ R*.i - System

From the disjunction of the two above, strengthening the left-hand side of the
next:
Vi::i¢ R*.inext i & R*.i- System

which, from the definition of Acyclicity, is exactly (16). O

10

Lemma 2 There is at least one maximal node in any nonempty above set of a
finite acyclic graph.

[Acyclicity = (Vi: A*i #0:(Fj:j € A*i: A*j = ()]
Proof: From graph theory. O

Property 17 Any nonpriority component has always a priority component
above it.

Vi :: invariant Acyclicity N (A* i #0 = (3j:j € A".i: A*.j = 0)) - System
(17)

Proof: From lemma 2 and (16). O
Property 18 Any component with priority eventually escapes every above set.
Vi, ju A*i=0+— i ¢ A*.j - System (18)
Proof: From the existential characteristics of (5), we have:
Vi :: transient Priority.i - System

that rewrites:
Vi A* =0 — A*i # (- System

From (15) and the above, using PSP:
Vi A*i=0~ R*i=0- System
Since i € A*.j = j € R*.i:
Vi A*i=0m (Vjuig¢ A*.j) - System

which is stronger than the required property (18). O
Finally, we prove the liveness correctness (9), which is equivalent to the
following property:

Property 19
Vi :: true — A*.4 =0 - System (19)

Property (14) is equivalent to:
Vi, ju A*i#DOANj ¢ A* i next j ¢ A*.i- System
which in turn is equivalent to:
Va,i:: A*.4 = a # 0 next A*.i C a- System
In the same way, from (18) we have:

Va,i,j: A*i=aNj€E A iNA"j=0— j¢&a- System

11

Applying PSP to the two above, we obtain:
Va,i,j: Ai=aNje A iNA* =0 A*.i G a- System
Using leads-to disjunction over j, it becomes:
Va,i:A*i=aN(Tj:je€A*i: A j=0) — A*.i G a- System

From the invariant (17), A*4 # 0 = (Jj : j € A*.i: A*.j = (), and therefore,
the previous formula implies:

Va,i:: A*i=a# 0~ A".i G a- System

Through induction on the cardinality of A*.i, this gives the liveness correct-
ness (9).

5 Conclusions

This paper explores a methodology for compositional development of systems.
The methodology attempts to work with two types of system properties: uni-
versal and existential. A goal of the methodology is to specify components
using only local properties. In some cases, system properties can be obtained
in a straightforward fashion from local component properties. In other cases,
creativity is required to derive system properties from local properties.

This case study exposes the use of three kinds of compositional properties:

e an existential property (5);
e a universal property, shared by all components (6);
e a universal property, not shared by other components (4).

The first two types of property are easy to use: they simply hold in the global
system when components are gathered. The third one, however, requires cre-
ativity and additional work to become useful in the composition step. The
case studies help us in exploring compositional steps that appear to be almost
mechanical in contrast to steps that require some ingenuity.

The specification of the conflict resolution solution included the property
that the graph of the priority relation is an acyclic graph. We could have
specified the components in terms of such acyclic graphs, but this would have
resulted in component specifications being nonlocal. The specification of one
component would include properties about the priority relationship between
completely different components. If we specify components using only local
properties, then we have to bridge the gap between local properties and the
global system property about acyclic graphs. We found no mechanical way of
bridging this gap.

The principle used to build a universal shared property is to weaken the
component properties so that all components can share the weakened property.

12

This transformation requires some knowledge on how shared variables are mod-
ified by other components. This knowledge is provided by other components
(universal) specification.

Note that this step leads to weaken a property, and is not exactly a refine-
ment step in the strict sense of the word [2, 11]. Such transformations, in-
troducing some nondeterminism, seem to appear frequently when dealing with
distributed programs [9, 7].

Universal properties seem to be closely related to global safety. In the prior-
ity example, the safety correctness is trivial, but we need a strong safety property
to prove the liveness part. In [3], a resource allocator example is derived. In
that example, all the safety points are local to components and, actually, the
example only makes use of existential properties.

Another point worth being noticed is that, in both the toy example and
the priority mechanism example, we only make use of statement properties
(transient or inductive safety properties). Properties like “always true” are
avoided. The theory provides a guarantees operator to deal with non transient
existential properties. However, for universal properties, nothing more than
inductiveness is used.

We are currently investigating such questions, both from the theoretical
point of view and by applying the theory of composition to a collection of
examples. In particular, we are working on developing a theory based on the
traditional rely—guarantee approach [8, 13] and relating it to other theories of
composition [10, 1].

The vision that drives us is that of modularity at the level used by manu-
facturers of personal computers, cars and airplanes. Such systems are complex
with large numbers of parts. We should be able to compose certain kinds of
software modules in the same way.

Just as there have been many generations of airplanes we now are moving
towards many generations of user interfaces, and the compositional technologies
that the community has learned in building airplanes over many generations are
now being used to build user interfaces and other software systems. The trend
towards plug-and-play, object systems, and component systems such as Java
Beans and Microsoft’s DCOM are examples of steps in this direction.

Formal theories that support compositional development of concurrent sys-
tems have been proposed. This work is an exploration of a theory based on
specifications using only local properties and two types of properties: universal
and existential. We believe that this theory is worthy of further investigation be-
cause of the extreme simplicity of its foundation and the successful case studies
of its use.

13

References

[1] Martin Abadi and Leslie Lamport. Conjoining specifications. ACM Trans-
actions on Programming Languages and Systems, 17(3):507-534, May 1995.

[2] R.J.R. Back. Refinement of parallel and reactive programs. Technical
report, Marktoberdorf Summer School on Programming Logics, 1992.

[3] K. Mani Chandy and Michel Charpentier. An experiment in program
composition and proof. Submitted to Formal Methods in System Design,
September 1998.

[4] K. Mani Chandy and Jayadev Misra. Parallel Program Design: A Foun-
dation. Addison-Wesley, 1988.

[5] K. Mani Chandy and Beverly A. Sanders. Predicate transformers for rea-
soning about concurrent computation. Science of Computer Programming,
24:129-148, 1995.

[6] K. Mani Chandy and Beverly A. Sanders. Reasoning about program com-
position. Technical Report 96-035, University of Florida, Department of
Computer and Information Science and Engineering, 1996.

[7] Michel Charpentier. A UNITY mapping operator for distributed programs.
In J. Fitzgerald, C.B. Jones, and P. Lucas, editors, Fourth International
Symposium of Formal Methods Europe (FME’97), volume 1313 of Lecture
Notes in Computer Science, pages 665—684. Springer-Verlag, September
1997.

[8] Pierre Collette. Design of Compositional Proof Systems Based on
Assumption-Commitment Specifications. Application to UNITY. Doctoral
thesis, Faculté des Sciences Appliquées, Université Catholique de Louvain,
June 1994.

[9] Mamoun Filali, Philippe Mauran, and Gérard Padiou. Raffiner pour
répartir. In Actes des quatriémes Rencontres francophones du Parallélisme
(RenPar’}), Villeneuve D’Ascq, France, 1992.

[10] S.S.Lam and A. U. Shankar. A theory of interfaces and modules 1: Compo-
sition theorem. IEEE Transactions on Software Engineering, 20(1):55-71,
January 1994.

[11] C. Morgan, P. Gardiner, K. Robinson, and T. Vickers. On the Refinement
Calculus. FACIT. Springer-Verlag, 1994.

[12] Beverly A. Sanders. Eliminating the substitution axiom from UNITY logic.
Formal Aspects of Computing, 3(2):189-205, April-June 1991.

[13] Rob T. Udink. Program Refinement in UNITY-like Environments. PhD
thesis, Utrecht University, September 1995.

14

